Home > Do Mathematics -> Algebra 1 -> DIY Simulator of Boats Colliding


 Build your own Simulator: Boats Colliding - Understanding Time as a Parameter

Scenario:  Two ships are sailing in the fog and are being monitored by tracing equipment. As they come into the observer's rectangular radar screen, one ship, the Rusty Tube, is at a point 900 mm to the right of the bottom left corner of the radar screen along the lower edge. The other ship, the Bucket of Bolts, is located at a point 100 mm above the lower left corner of that screen. One minute later, both ships' positions have changed. The Rusty Tube has moved to a position on the screen 3 mm left and 2 mm above its previous position on the radar screen. Meanwhile, the Bucket of Bolts has moved to a position 4 mm right and 1 mm above its previous location on that screen.

Question: Assume that both ships continue to move at a constant speed on their respective linear courses. Graph this problem. Can you see on the graph what is happening? Now, create a simulator that animates the boats using time and find out if the two ship will collide. Then show algebraically what is happening with equations.

GeoGebra InterActivity Directions for InterActivity  
To animate, click on the play button at bottom left of graph. To animate manually, right-click on slider and deselect "Animation on". Then, click and drag the point red point for time on the slider.

Applet DIY Directions
Directions Notes on Directions
Notes on 3 and 4: Recommend using the input window to input A and B. This makes these points movable off the axes (free points)
Notes on 5 and 6: Notice the names At1 and Bt1. Don't use names A1, A2,..., B1,B2, ..., etc. These names are reserved for spreadsheet entries.
Notes on 7 and 8: Of course you can use the line tool. But A and At1 are very close together on this big grid, so inputting is probably easier. 

The graph

1. Open GeoGebra (http://geogebra.org)

2. Change the graphics view to fit the 2 starting points.

  2a. Put (0,0) down by the bottom left corner and zoom-out so that the window is (1100,800).

  2b. Turn the grid on. (Help is coming for this.)

3. Input point A. Click in input window and type: A=(900,0) and hit Enter.

4. Input point B. Type: B=(0,100) and hit Enter.

5. Input point At1. Type: At1=A+(-3,2) and hit Enter.

6. Input point Bt1. Type Bt1=B+(4,1) and hit Enter.

7. Input line a. Type line[A,At1] and hit Enter.

8. Input line b. Type line[B,Bt1] and hit Enter.


The animated simulator

9. Input number t. Type t=0 and hit Enter.

10. Make t a slider. Right-click on t in algebra window. Select "Properties". Click & drag the properties box down a bit.

  10.a On the Basic tab, select "Show object". (Slider should appear in graphics window.) Check that "Show label" is selected.

  10.b On the Slider tab: min=0, max=200, increment=1, width=400, repeat=increasing.

  10.c Click on Close.

11. Input point At. Click in input window and type: At=A+t*(-3,2) and hit Enter.

12. Input point Bt. Type Bt=B+t*(4,1) and hit Enter.


Right-click on the slider t and select: Animation on.

Why I like this Problem and some Good Questions   One pair of starting coordinates to get the boats to collide:
  1. The graph looks like every 2x2 system of linear equations we solve in Algebra 1.
    • It looks like the boats collide at the intersection point.
    • It seems like all they need to do is solve the system and be done.
    • ... until you say "Where is time on the graph?".
  2. The student can build a animated simulator that "shows time" - easily!
    • Then they can see that the boats do not collide.
    • Above is a simulator I built using the freeware GeoGebra.
  3. The kids can make the boats collide - what fun!.
    • They can move the starting points until they get the boats to collide.
    • They can insert boat images "attached" to the points and an explosion image if they collide - even my postgraduate kids love this.
    • They can also adapt the simulator so that they can change the slopes and get the boats to collide. Directions here.
    • My thanks to David Cox for seeing this!
  4. You can get all kinds of mathematics out of them.
    • Have them calculate when each of the boats reaches the intersection point in the original question (see below).
    • Have them check the math on their "colliding simulator" to see if the boats really do collide, where and when.
    • Ask them about a 3D graph and what this would look like when the boats don't collide and when they do.
Algebraic Solution

Rusty Tube's starting co-ordinates are (900,0).
Moves by (-3,+2) so the slope (gradient) is 2:-3=-0.6667 
This means the equation is y=-0.6667x+c .
  Substituting y=0  and x=900 , 0=600+c   or c=600 .
  So the equation of RT's journey is y=-0.6667x+600 .

===

Bucket of Bolts starting co-ordinates are (0,100).
Moves by (+4,+1) so the slope (gradient) is 1:4=0.25 .
Which means the equation is y=0.25x+c .
  Substituting y=100  and x=0 , 100=0+c   or c=100 .
  So the equation of BB's journey is y=0.25x+100 .


Put the equations together and find their intersection on the x-axis.
That is, solve 2x2 system of linear equations: y=0.6667x+600 and y=0.25x+100   .
  Set them equal and solve for x:
  0.6667x+600=0.25x+100 
     500=0.91667x 
        x=500=0.91667 
        x=545.45 

We do not need the value of y at this point for the problem, but it is: y=0.6667x+600  where x=545.45  So: y=236.37 


Now find the time taken for each boat to get there and if they are the same they will collide.

RT starts at 900 and travels horizontally x=3  each minute, so 545.45=900-3t 
  Solving for t: t=354.545/3  or t=118.18  [min]

===

BB starts at 0 and travels horizontally x=+4  each minute, so 545.45=0+4t 
  Solving for t: t=545.45/4  or t=136.36  [min]

===

Since 118.18 136.36 , the boats will not collide.


Answer adapted from Dan M
Metadata (includes links for downloads)
Global Simulation of 2 Boats Traveling in Straight Lines at Constant Speeds
Brief InterActivity-Build your own Simulator of Boats Colliding on the Seas
Grade 8th and up
Strand Algebra 1, Algebra 2
Standard Algebra 1 3.4 ACT EE 28-32
Keywords linear equations, systems, time, parameter, distance, speed, time, simulation, geogebra, dynamic, freeware, applet, offline, online
Comments Found problem on Yahoo Answers
Credits Feedback and Collision by David Cox
Download
Author LFS - contact
Type Freeware - Available for Offline Use - Translatable (html)
Use Requires sunJava player

Related Topics: Linear Systems; DIY Simulator of Free Fall plus Constant Horizontal Speed 


Home > Do Mathematics -> Algebra 1 -> DIY Simulator of Boats Colliding

 

lgebra, distance, speed, time, DST, linear functions, simulator geogebra, application, geometry, program